

■CHIP COIL GUIDE

Murata's LQ series of chip coils consists of compact, high-performance inductors. Their innovative coil and case structures mean low DC resistance and outstanding

high-frequency characteristics. The series is designed for a variety of applications, facilitating component selection for individual circuit requirements.

■PRODUCTS GUIDE

Applio	ation	Part Number	Structure	Dimensi	ons			Induct	ance	Rang	ge (H)			Page
Applic	ation	Fait Number	Structure	(mm)	(inch)	1n	10n	100n	1 μ	10 μ	100 μ	1 m	10 m	raye
General Freq	General Frequency Range			3.2 ■ ‡ 1.6	1206	1						 		
			Wound coil (ferrite core)	3 <u>.2</u>	1210	i 	 					 	 - -	3-7
		LQH(N)4N		4.5 ↑ 3.2	1812	 		1					. – – – –	
		LQG21N	Magnetically shielded multilayer	2.0	0805	-	1					-		8-9
	Tight inductance tolerance	LQS33N	Magnetically shielded	3.2 ↑ 3.5	1214	 	 	 				 	 	10-11
High- frequency	Tight inductance tolerance	LQG11A NEW	Multilayer	1.6 ■ + 0.8	0603									
Range		LQP10A NEW	Thin film	1.0 ≟; 0.5	0402			i ! !	i ! !	; ! !) 	 	12-18	
		LQP11A NEW		1.6 m t 0.8	0603				 			 	 - -	
		LQP21A		2.0 ≡ ;1.25	0805									
		LQN21A	Wound coil	2.0 ≡ :1.5	0805				į	į	i ! !	i 	 - -	19-20
		LQN1A	(air core)	3.2	1206	 			1			 	 - -	21
		LQN1H	Wound coil (ferrite core)	3.2	1206									22
Chokes		LQH1C	Wound coil	3.2	1206	 	 			1		 	 	23-25
			Would coll	3.2	1210	1		 				 	 - -	23 23
		LQG21C	Magnetically shielded multilayer	2.0 = : 1.25	0805	-								26
		LQN6C	Wound coil	5.7	2220	 								07.00
		LQS66C	Magnetically shielded	6.3	2525	1 1 1 1	 					1		27—29

Please refer to the usage conditions;

• Land Pattern • • • • • • P.30
• Mounting Instructions • • • • • • • P.31
• Soldering• • • • • • • • • • • • • P.32
• Notice • • • • • • • • • • • • • • P.33
• Dimensions of Taping• • • • • • • • P.34
• Design Kit • • • • • • • P.35
• Information • • • • • • • • • • • P.37

■PART NUMBERING

(Please specify the part number when ordering.)

1 Chip Coil

2Form · Structure

Structure
ıg
ting

Size

Mark	Size
1	3.2×1.6mm
3	3.2×2.5mm
4	4.5×3.2mm
6	5.7×5.0mm
11	1.6×0.8mm
21	2.0×1.25(1.5)mm
33	3.2×3.5mm
66	6.3×6.3mm

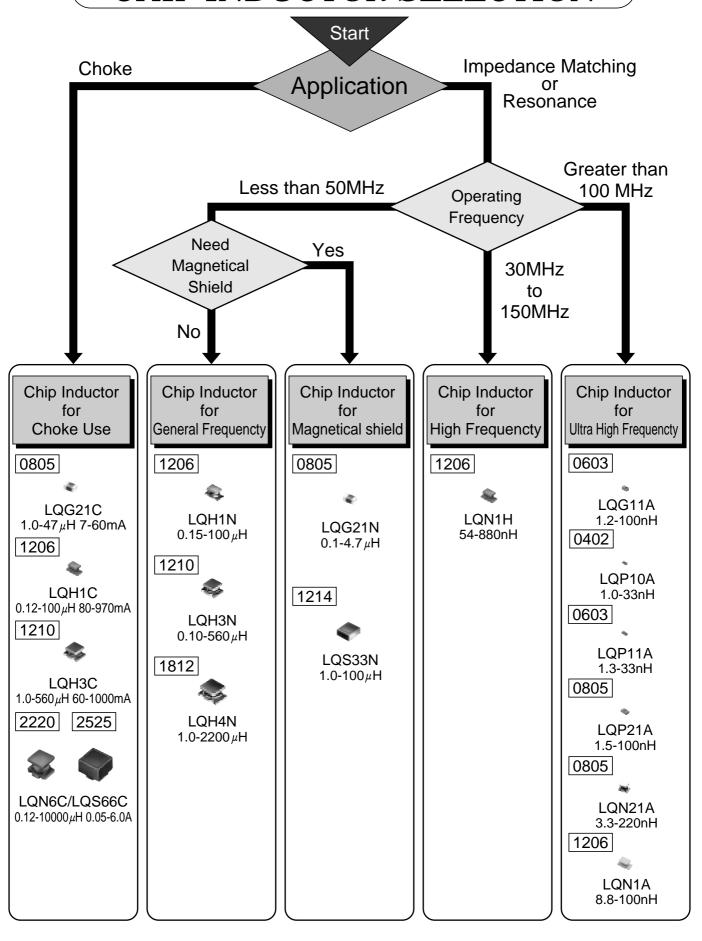
◆ Characteristic · Applications

Mark	Characteristic · Applications
Ν	General use
С	Choke coil
Α	Air coil
Н	High Q

5Inductance

6 Inductance Tolerance

Mark	Tolerance
G	± 2%
J	± 5%
K	±10%
М	±20%
N	±30%
С	±0.2nH
S	±0.3nH
D	±0.5nH


Additional Number

8 Packaging Code

(LQG21N/21C/LQP10A/11A)

Mark	Packaging
T1	Taped (Ø180mm Reel)
T2	Taped (Ø330mm Reel)
B1	Bulk package

CHIP INDUCTOR SELECTION

Standard Chip Coil LQH1N/LQH3N/LQH(N)4N Series

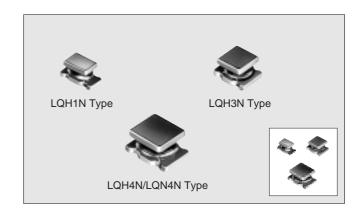
Wire Wound Chip Coil with High Q Value at High Frequencies and Low DC Resistance

The chip coil LQH/LQN series consists of miniature chip inductors wound on a special ferrite core and are made possible by an automatic winding technique developed by Murata. These inductors have a high Q at high frequencies and low DC resistance, making them very well suited to enhancing the performance of electronic circuits in video, communications, and audio equipment.

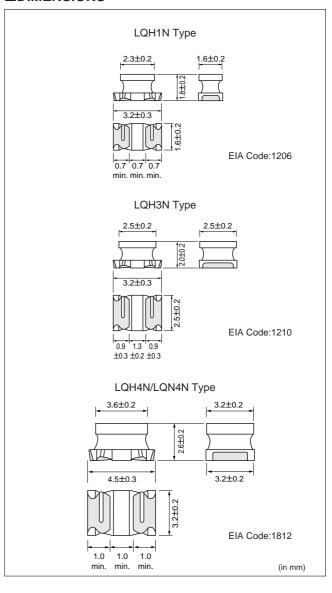
FEATURES

- 1. There are three different inductor types: the LQH1N,LQH3N, and LQH(N)4N series. These three series cover a wide inductance range (from 0.1μH to 2.2mH).
- 2. The series has outstanding frequency characteristics and a high Q value at high frequencies.
- 3. The low DC resistance permits high current flow.
- 4. The series has excellent solder heat resistance. Both flow and reflow soldering methods can be employed.

LQH1N


Miniature size (3.2×1.6×1.8mm) allows parallel mounting at 2.5mm pitch. The series is suitable for portable audio-visual equipment.

LQH3N


A high Q value makes this series suitable for circuits up to 100MHz in frequency. The series is excellent for video equipment.

• LQH(N)4N

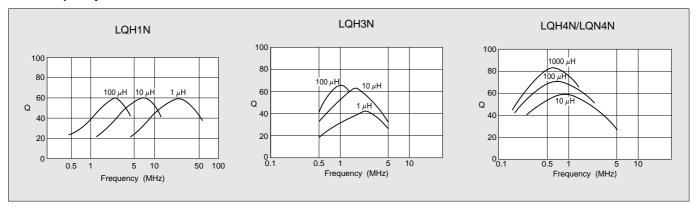
This series offers high inductance values and high current capacity. At $10\mu H$, up to 450mA designs are possible, resulting in excellent performance when the inductors are used as choke coils.

■DIMENSIONS

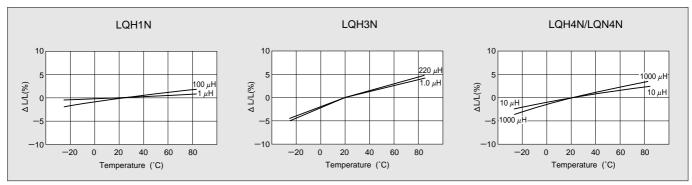
LQH1N

		Inductance		Q		202	Self-resonant	Allowable	0	
Part Number	Nominal Value(μΗ)	Tolerance (%)		Nominal Value(min.)	Test Frequency	DC Resistance (Ω)	Frequency (MHz min.)	Current (mA)	Operating Temp. Range	
LQH1NR15K04	0.15			00		0.39±40%		250		
LQH1NR22K04	0.22			20		0.43±40%	250	240	-	
LQH1NR33K04	0.33					0.45±40%		230		
LQH1NR47K04	0.47			30	25MHz	0.83±40%	200	215		
LQH1NR56K04	0.56	±10				0.61±40%	180	200		
LQH1NR68K04	0.68					0.67±40%	160	190		
LQH1NR82K04	0.82					0.73±40%	120	185		
LQH1N1R0K04	1.0					0.49±30%	100	175		
LQH1N1R2K04	1.2					0.9 ±30%	90	165		
LQH1N1R5K(J)04	1.5				10MHz	1.0 ±30%	75	155		
LQH1N1R8K(J)04	1.8					1.6 ±30%	60	150]	
LQH1N2R2K(J)04	2.2					0.7 ±30%	50	140		
LQH1N2R7K(J)04	2.7			35		0.55±30%	43	135	-25°C to +85°C	
LQH1N3R3K(J)04	3.3					1.4 ±30%	38	130		
LQH1N3R9K(J)04	3.9		1MHz			1.5 ±30%	35	125		
LQH1N4R7K(J)04	4.7				8MHz	1.7 ±30%	31	120		
LQH1N5R6K(J)04	5.6				OIVII IZ	1.8 ±30%	28	115		
LQH1N6R8K(J)04	6.8					2.0 ±30%	25	110		
LQH1N8R2K(J)04	8.2					2.2 ±30%	23	105		
LQH1N100K(J)04	10	±10				2.5 ±30%	20	100		
LQH1N120K(J)04	12	(±5)			5MHz	2.7 ±30%	18	95		
LQH1N150K(J)04	15				JIVII IZ	3.0 ±30%	16	90		
LQH1N180K(J)04	18					3.4 ±30%	15			
LQH1N220K(J)04	22					3.1 ±30%	14	85		
LQH1N270K(J)04	27					3.4 ±30%	13			
LQH1N330K(J)04	33					3.8 ±30%	12	80		
LQH1N390K(J)04	39					7.2 ±30%	11	55		
LQH1N470K(J)04	47			40	2.5MHz	8.0 ±30%	10			
LQH1N560K(J)04	56					8.9 ±30%	9.0	50		
LQH1N680K(J)04	68					9.9 ±30%	8.5			
LQH1N820K(J)04	82					11 ±30%	7.5	45		
LQH1N101K(J)04	100					12 ±30%	7.0	+∪		

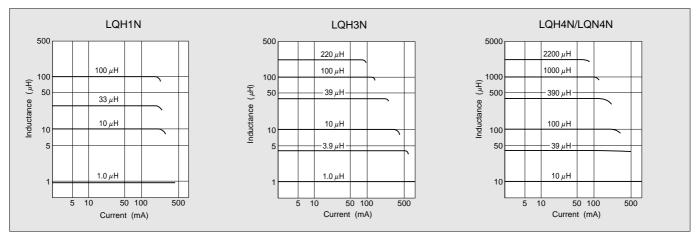
LQH3N

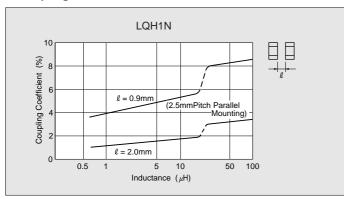

		Inductance)	(2		Self-resonant	Allowable	
Part Number	Nominal Value(H)	Tolerance (%)		Nominal Value(min.)	Test Frequency	DC Resistance (Ωmax.)	Frequency (MHz min.)	Current (mA)	Operating Temp. Range
LQH3NR10M34	0.10			20		0.25		700	
LQH3NR18M34	0.18						200	650	
LQH3NR27M34	0.27			25	25.2MHz		200	600	
LQH3NR39M34	0.39			20				530	
LQH3NR56M34	0.56	±20					160	550	
LQH3NR68M34	0.68			30			100	470	
LQH3NR82M34	0.82						120	450	
LQH3N1R0M34	1.0					0.5	100	445	
LQH3N1R2M34	1.2					0.6	100	425	
LQH3N1R5K34	1.5					0.0	75	400	
LQH3N1R8K34	1.8					0.7	60	390	
LQH3N2R2K34	2.2					0.8	50	370	
LQH3N2R7K34	2.7			20		0.9	43	320	
LQH3N3R3K34	3.3	±10				1.0	38	300	
LQH3N3R9K34	3.9					1.1	35	290	
LQH3N4R7K34	4.7					1.2	31	270	
LQH3N5R6K34	5.6					1.3	28	250	
LQH3N6R8K34	6.8					1.5	25	240	_25°C
LQH3N8R2K34	8.2		1MHz		1MHz	1.6	23	225	to
LQH3N100K(J)34	10		1141112			1.8	20	190	+85°C
LQH3N120K(J)34	12					2.0	18	180	
LQH3N150K(J)34	15			35		2.2	16	170	
LQH3N180K(J)34	18					2.5	15	165	
LQH3N220K(J)34	22					2.8	14	150	
LQH3N270K(J)34	27					3.1	13	125	
LQH3N330K(J)34	33					3.5	12	115	
LQH3N390K(J)34	39					3.9	11	110	
LQH3N470K(J)34	47					4.3		100	
LQH3N560K(J)34	56					4.9	10	85	
LQH3N680K(J)34	68	±10				5.5	9.0	80	
LQH3N820K(J)34	82	(±5)				6.2	8.5	70	
LQH3N101K(J)34	100			40		7.0	8.0	80	
LQH3N121K(J)34	120					8.0	7.5	75	
LQH3N151K(J)34	150					9.3	7.0	70	
LQH3N181K(J)34	180					10.2	6.0		
LQH3N221K(J)34	220			79	796kHz	11.8	5.5	65	
LQH3N271K(J)34	270				. 551112	12.5			
LQH3N331K(J)34	330					13.0			
LQH3N391K(J)34	390					22.0	5.0	50	
LQH3N471K(J)34	470		1kHz	50		25.0		45	
LQH3N561K(J)34	560					28.0		40	

LQH4N/LQN4N


		Inductance)	(Q		Self-resonant	Allowable			
Part Number	Nominal Value(μΗ)	Tolerance (%)		Nominal Value(min.)	Test Frequency	DC Resistance (Ωmax.)	Frequency (MHz min.)	Current (mA)	Operating Temp. Range		
LQH4N1R0M04	1.0					0.00	120				
LQH4N1R2M04	1.2					0.20	100				
LQH4N1R5M04	1.5					0.30	85				
LQH4N1R8M04	1.8	±20		20			75				
LQH4N2R2M04	2.2	±20		20			62	500			
LQH4N2R7M04	2.7			0.32 53 0.35 47							
LQH4N3R3M04	3.3										
LQH4N3R9M04	3.9					0.38	41				
LQH4N4R7K04	4.7					0.40	38				
LQH4N5R6K04	5.6	±10		20		0.47	33				
LQH4N6R8K04	6.8	<u> </u>		30		0.50	31	450			
LQH4N8R2K04	8.2			1MHz	0.56	27	450				
LQH4N100K(J)04	10				I IVII IZ	0.50	23	400			
LQH4N120K(J)04	12					0.62	21	380			
LQH4N150K(J)04	15					0.73	19	360			
LQH4N180K(J)04	18		1MHz			0.82	17	340			
LQH4N220K(J)04	22			35		0.94	15	320			
LQH4N270K(J)04	27					1.1	14	300	_25°C		
LQH4N330K(J)04	33					1.2	12	270	to		
LQH4N390K(J)04	39					1.4	11	240	+85°C		
LQH4N470K(J)04	47					1.5	10	220	_		
LQH4N560K(J)04	56					1.7	9.3	200			
LQH4N680K(J)04	68					1.9	8.4	180			
LQH4N820K(J)04	82					2.2	7.5	170			
LQH4N101K(J)04	100					2.5	6.8	160			
LQH4N121K(J)04	120	±10						3.0	6.2	150	
LQH4N151K(J)04	150	(±5)				3.7	5.5	130			
LQH4N181K(J)04	180	(==,				4.5	5.0	120			
LQH4N221K(J)04	220					5.4	4.5	110			
LQH4N271K(J)04	270				796kHz	6.8	4.0	100			
LQH4N331K(J)04	330					8.2	3.6	95			
LQH4N391K(J)04	390					9.7	3.3	90			
LQH4N471K(J)04	470			40		11.8	3.0	80			
LQH4N561K(J)04	560					14.5	2.7	70			
LQH4N681K(J)04	680					17.0	2.5	65			
LQH4N821K(J)04	820					20.5	2.2	60			
LQH4N102K(J)04	1000		1kHz	·lz		25.0	2.0	50			
LQH4N122K(J)04	1200					30.0	1.8	45			
LQH4N152K(J)04	1500				252kHz	37.0	1.6	40			
LQN4N182K(J)04	1800					45.0	1.5	35			
LQN4N222K(J)04	2200					50.0	1.3	30			

TYPICAL ELECTRICAL CHARACTERISTICS


• Q - Frequency Characteristics


• Inductance - Temperature Characteristics

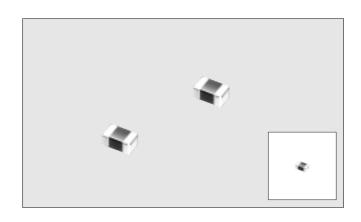
• Inductance - Current Characteristics

Coupling Coefficient

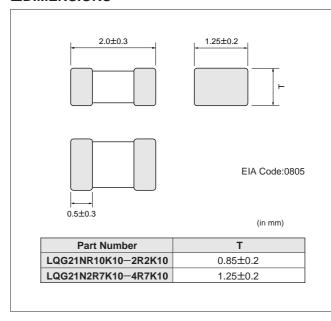
Monolithic Chip Coil LQG21N Series

Magnetically Shielded Monolithic Chip Coil Low Drift Excellent for High Density Mounting

The LQG21N series consists of magnetically shielded chip coils developed using original Murata multilayer process technology and magnetic materials.

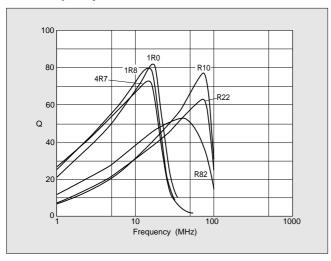

The coils occupy one quarter the volume of conventional chip coils and feature high reliability.

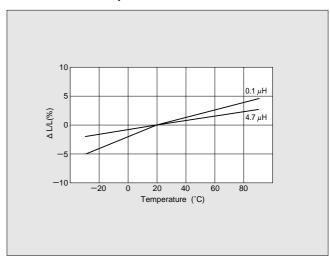
FEATURES


- 1. Magnetically shielded structure provides excellent crosstalk characteristics.
- 2. Compact (2.0×1.25mm) and lightweight.
- 3. Low inductance drift resulting from soldering, environmental tests, etc.
- 4. Outstanding solder heat resistance. Either flow or reflow soldering can be used.

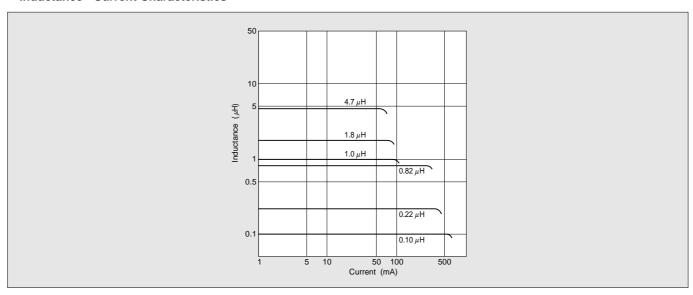
APPLICATIONS

- Hard-disk drives
- Audio-Visual equipment
- Telecommunications equipment


DIMENSIONS


		Inductance	•	Q		DC Decistores	Self-resonant	Allowable	Operating	
Part Number	Nominal Value(μH)	Tolerance (%)	Test Frequency	Nominal Test		DC Resistance (Ω max.)	Frequency (MHz min.)	Current (mA)	Operating Temp. Range	
LQG21NR10K10	0.10					0.26	340			
LQG21NR12K10	0.12					0.29	310			
LQG21NR15K10	0.15					0.32	270			
LQG21NR18K10	0.18			20		0.35	250	250		
LQG21NR22K10	0.22					0.38	220			
LQG21NR27K10	0.27		25MHz		25MHz	0.42	200	200	-25°C to +85°C	
LQG21NR33K10	0.33					0.48	180			
LQG21NR39K10	0.39			25		0.53	165			
LQG21NR47K10	0.47					0.57	150	200		
LQG21NR56K10	0.56					0.63	140	150		
LQG21NR68K10	0.68	±10				0.72	125			
LQG21NR82K10	0.82					0.81	115			
LQG21N1R0K10	1.0					0.40	107			
LQG21N1R2K10	1.2					0.47	97	50		
LQG21N1R5K10	1.5					0.50	87	50		
LQG21N1R8K10	1.8					0.57	80			
LQG21N2R2K10	2.2		10MHz	45	10MHz	0.63	71			
LQG21N2R7K10	2.7					0.69	66			
LQG21N3R3K10	3.3					0.80	59	30		
LQG21N3R9K10	3.9					0.89	53			
LQG21N4R7K10	4.7					1.00	47			

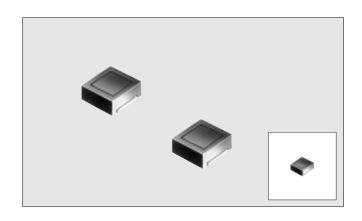
■TYPICAL ELECTRICAL CHARACTERISTICS


• Q - Frequency Characteristics

• Inductance - Temperature Characteristics

• Inductance - Current Characteristics

Small Tolerance Chip Coil LQS33N Series for Oscillation Circuits

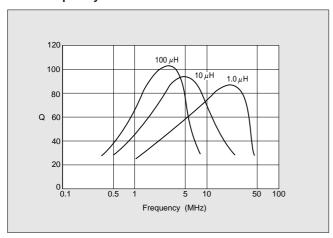

High Q, Magnetically Shielded Chip Coil with Tight Inductance Tolerance ($\pm 2\%$), Perfect in Oscillation Circuits

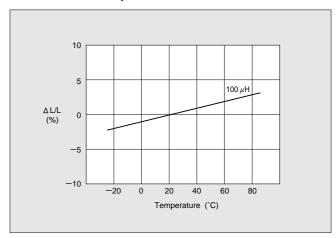
The LQS33N series consists of closed, magnetically shielded chip inductors wound on ferrite bobbins developed by Murata.


Their high Q value virtually eliminates interference with nearby circuits. This, combined with their tight inductance tolerance, makes these chip inductors excellent in resonant circuits.

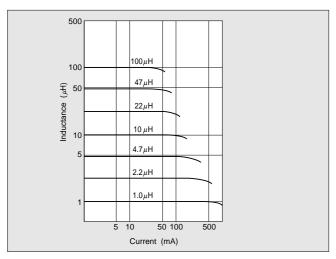
FEATURES

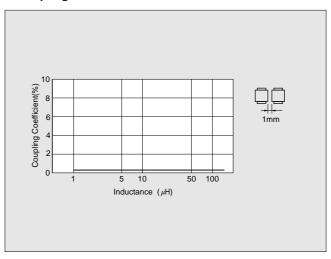
- The coil's outstanding stability yields a reduction in inductor tolerance to within ±2%.
- 2. Its high Q (typically greater than 80) is present at all inductance values and is the basis of this chip coil's outstanding low loss circuit characteristics.
- The ferrite core shielding structure both eliminates external interference and facilitates high mounting density.
- 4. Small inductance variation with respect to temperature change makes these coils applicable in traps or LC filters for stable frequency characteristics.
- 5. This series is thin and compact, with a thickness of merely 1.8mm.


DIMENSIONS


		Inductance	9		Q		DC	Self-resonant	Allowable	0
Part Number	Nominal Value(μΗ)	Tolerance (%)	Test Frequency	Peak Value (Typ.)	Min. Value	Test Frequency	Resistance		Current (mA)	Operating Temp. Range
LQS33N1R0G(J)04	1.0						0.19±30%	120		
LQS33N1R2G(J)04	1.2			85			0.22±30%	100	70	
LQS33N1R5G(J)04	1.5			05			0.26±30%	80	70	
LQS33N1R8G(J)04	1.8		7.96				0.28±30%	70		
LQS33N2R2G(J)04	2.2						0.33±30%	60	50	
LQS33N2R7G(J)04	2.7						0.39±30%	55		
LQS33N3R3G(J)04	3.3				60	7.96	0.43±30%	50		
LQS33N3R9G(J)04	3.9		MHz			MHz	0.45±30%	45		
LQS33N4R7G(J)04	4.7						0.52±30%	40		
LQS33N5R6G(J)04	5.6			90			0.56±30%	37		
LQS33N6R8G(J)04	6.8						0.62±30%	35	30	
LQS33N8R2G(J)04	8.2	±2					0.69±30%	32		
LQS33N100G(J)04	10	(±5)					0.94±30%	30	15	
LQS33N120G(J)04	12						1.1 ±30%	27		
LQS33N150G(J)04	15				70		1.2 ±30%	25		
LQS33N180G(J)04	18				70		1.3 ±30%	23		
LQS33N220G(J)04	22						1.5 ±30%	20		
LQS33N270G(J)04	27		2.52			2.52	1.7 ±30%	18		
LQS33N330G(J)04	33		MHz	95		MHz	2.4 ±30%	16		
LQS33N390G(J)04	39			95			2.6 ±30%	15		
LQS33N470G(J)04	47						3.0 ±30%	14	10	
LQS33N560G(J)04	56				80		3.3 ±30%	13		
LQS33N680G(J)04	68			100			5.3 ±30%	12		
LQS33N820G(J)04	82			100			5.8 ±30%	11		
LQS33N101G(J)04	100						6.6 ±30%	10		

■TYPICAL ELECTRICAL CHARACTERISTICS


• Q - Frequency Characteristics

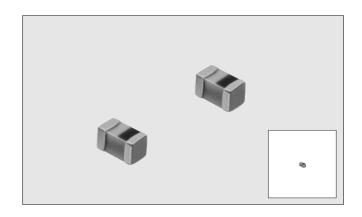

• Inductance - Temperature Characteristics

• Inductance - Current Characteristics

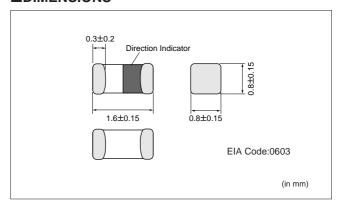
Coupling Coefficient

Monolithic Chip Coil LQG11A Series for High Frequency

High-Q, Stable Inductance in High Frequency Range Compact Size Multilayer Chip Inductor for High Frequency Range

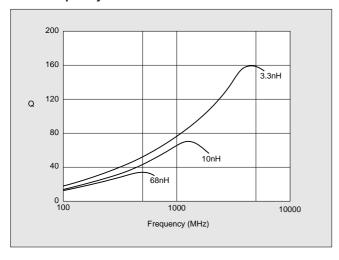

The LQG11A series is designed to realize stable characteristics in high frequency range applying integrated multilayer process.

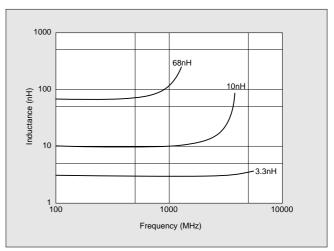
FEATURES


- High-Q, stable inductance in high frequency is available due to its original low-capacitance structure. It is suitable for mobile communication equipments.
- Small size of LQG11A(1.6×0.8×0.8mm) is suitable for small handy equipment, especially for card size equipment.
- 3. The external electrodes with nickel barrier structure provide excellent solder heat resistance.

APPLICATIONS

• High frequency circuit of telecommunication equipment, such as DECT, PHS, PCS, PCN, GSM.


DIMENSIONS


		Inductance		(Q	DC	Self-	Allowable	Operating
Part Number	Nominal Value (nH)	Tolerance	Test Frequency (MHz)	Nominal Value (min.)	Test Frequency (MHz)	Resistance	resonant Frequency (MHz min.)	Current (mA)	Temp. Range
LQG11A1N2S00	1.2								
LQG11A1N5S00	1.5					0.10			
LQG11A1N8S00	1.8					0.10			
LQG11A2N2S00	2.2						6000		
LQG11A2N7S00	2.7	±0.3nH					0000		
LQG11A3N3S00	3.3					0.15			
LQG11A3N9S00	3.9								
LQG11A4N7S00	4.7					0.20			
LQG11A5N6S00	5.6					0.20	5000		
LQG11A6N8J(K)00	6.8					0.25	3000		
LQG11A8N2J(K)00	8.2					0.20	4000		40
LQG11A10NJ(K)00	10		100	12	100	0.30	3500	300	−40°C
LQG11A12NJ(K)00	12		100	12	100	0.35	3000	300	+85°C
LQG11A15NJ(K)00	15					0.40	2800		
LQG11A18NJ(K)00	18					0.45	2600		
LQG11A22NJ(K)00	22	±5%				0.50	2300		
LQG11A27NJ(K)00	27	(±10%)				0.55	2000		
LQG11A33NJ(K)00	33					0.60	1700		
LQG11A39NJ(K)00	39					0.65	1500		
LQG11A47NJ(K)00	47					0.70	1200		
LQG11A56NJ(K)00	56					0.75	1100		
LQG11A68NJ(K)00	68					0.80	1000		
LQG11A82NJ(K)00	82					0.85	900		
LQG11AR10J(K)00	100					0.90	800		

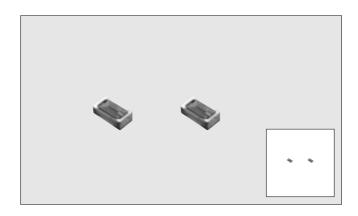
■TYPICAL ELECTRICAL CHARACTERISTICS

• Q - Frequency Characteristics

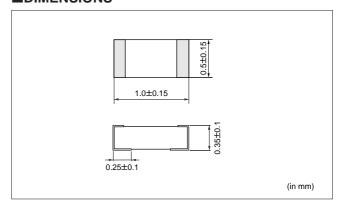
• Inductance - Frequency Characteristics

Chip Coil LQP10A Series

Tight Inductance Tolerance Chip Coil for High Frequency Application Small Size(0402) and Tight Inductance Tolerance (± 0.2 nH or $\pm 2\%$)

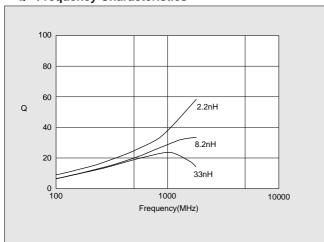

The 0402 size thin film chip inductor LQP10A series minimize set designing. Its tight inductance tolerance (± 0.2 nH or $\pm 2\%$) enables stable circuit operation.

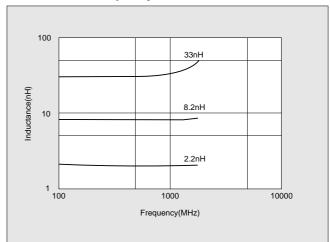
FEATURES


- 1. Tight inductance tolerance (±0.2nH, ±2%) realized by thin-film technology enables assemble with no tuning.
- High self resonant frequency due to low stray capacitance and close inductance distribution provide stable inductance in high frequency circuit such as telecommunication equipment (Tuning-less circuit is available).
- 3. Ultra-Small size 0402 inductor which is low,and lightest weight (half of multilayer type) in the world enables to miniaturize mobile telephone.
- The external electrodes with nickel barrier structure which applies solder plating on surface provide excellent solder heat resistance.

APPLICATIONS

• High frequency circuit of telecommunication equipment, such as CDMA,DECT, PHS, PCS, PCN, GSM,DCS.


DIMENSIONS


		Inductance	е		Q		DC	Self-	Allowable	Operating
Part Number	Nominal Value (nH)	Tolerance	Test Frequency (MHz)	Typical @1GHz	Min. Value	Test Frequency (MHz)	Resistance	resonant Frequency (MHz min.)	Current (mA)	Temp. Range
LQP10A1N0C00	1.0			30			0.1	6000	400	
LQP10A1N2C00	1.2			30			0.1	6000	390	
LQP10A1N5C00	1.5	_		30			0.2	6000	280	
LQP10A1N8C00	1.8	±0.2nH		30			0.2	6000	280	
LQP10A2N2C00	2.2			29			0.3	6000	220	
LQP10A2N7C00	2.7	_		28			0.3	6000	220	
LQP10A3N3C00	3.3			28			0.4	6000	190	
LQP10A3N9C00	3.9	-		28			0.5	6000	170	
LQP10A4N7C(J)00	4.7			29			0.6	6000	160	-40°C
LQP10A5N6C(J)00	5.6	±0.2nH	500	26	13	500	0.7	6000	140	to
LQP10A6N8C(J)00	6.8	(±5%)		26			0.9	6000	130	+85°C
LQP10A8N2C(J)00	8.2			26			1.1	5500	110	
LQP10A10NG(J)00	10			24			1.3	4500	100	
LQP10A12NG(J)00	12	_		25			1.6	3700	90	
LQP10A15NG(J)00	15	±2%		23			1.8	3300	90	
LQP10A18NG(J)00	18	(±5%)		22			2.0	3100	80	
LQP10A22NG(J)00	22	1		21			2.6	2800	70	
LQP10A27NG(J)00	27			21			3.1	2500	70	
LQP10A33NG(J)00	33			23			3.8	2100	60	

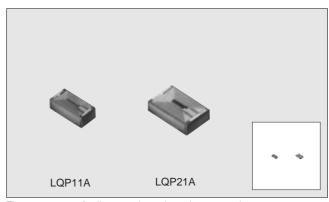
■TYPICAL ELECTRICAL CHARACTERISTICS

• Q - Frequency Characteristics

• Inductance - Frequency Characteristics

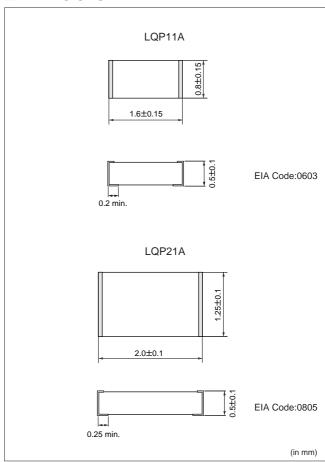
Chip Coil LQP11A/LQP21A Series

Tight Inductance Tolerance Chip Coil for High Frequency Application Small Size and Tight Inductance Tolerance (± 0.2 nH or $\pm 2\%$)


The LQP11A/LQP21A series consists of chip coils with a tight inductance tolerance (± 0.2 nH or $\pm 2\%$) achieved even in low inductance region.

FEATURES

- 1. Tight inductance tolerance (\pm 0.2nH, \pm 2%) realized by thin-film technology enables assemble with no tuning.
- High self resonant frequency due to low stray capacitance and close inductance distribution provide stable inductance in high frequency circuit such as telecommunication equipment.
- 3. Small size of 0603(LQP11A), 0805(LQP21A) is suitable for small handy equipment, especially for card size equipment.
- 4. The external electrodes with nickel barrier structure provide excellent solder heat resistance.


APPLICATIONS

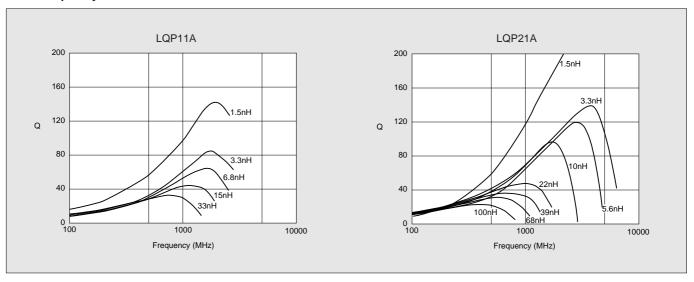
 High frequency circuit of telecommunication equipment, such as DECT, PHS, PCS, PCN, GSM

The appearance of coil pattern depends on the part number.

DIMENSIONS

Use plastic tweezers when treating with tweezers.

LQP11A


		Inductance	9		Q		DC	Self-	Allowable	Operating
Part Number	Nominal Value (nH)	Tolerance	Test Frequency (MHz)	Peak Value (Typ.)	Min. Value	Test Frequency (MHz)	Resistance	resonant Frequency (MHz min.)	Current (mA)	Temp. Range
LQP11A1N3C00	1.3			160			0.3		300	
LQP11A1N5C00	1.5			140			0.5		300	
LQP11A1N8C00	1.8			120				6000		
LQP11A2N2C00	2.2			100			0.4	0000	250	
LQP11A2N7C00	2.7			90			0.4		230	
LQP11A3N3C00	3.3	±0.2nH		85						
LQP11A3N9C00	3.9			80			0.5	5900		
LQP11A4N7C00	4.7			75			0.5	5200	200	4000
LQP11A5N6C00	5.6		500	65	17	500	0.6	4700	200	−40°C to
LQP11A6N8C00	6.8		300	63	17	300	0.7	4300		+85°C
LQP11A8N2C00	8.2			57			0.8	3600		
LQP11A10NG00	10			55			1.0	3400	150	
LQP11A12NG00	12			50			1.0	3000	150	
LQP11A15NG00	15			43			1.3	2700		
LQP11A18NG00	18	±2%		39			1.5	2300		
LQP11A22NG00	22			38			1.9	2100	100	
LQP11A27NG00	27			32			2.4	1900	100	
LQP11A33NG00	33			30			2.8	1700		

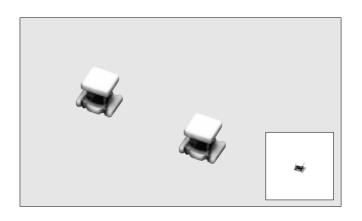
LQP21A

		Inductance)		Q		DC	Self-	Allowable	Operating
Part Number	Nominal Value (nH)	Tolerance	Test Frequency (MHz)	Peak Value (Typ.)	Min. Value	Test Frequency (MHz)	Resistance	resonant Frequency (MHz min.)	Current (mA)	Temp. Range
LQP21A1N5C14	1.5			300			0.15		550	
LQP21A1N8C14	1.8			250			0.2		500	
LQP21A2N2C14	2.2			200	15			6000		
LQP21A2N7C14	2.7			150	15		0.25	6000	450	
LQP21A3N3C14	3.3	±0.2nH		125			0.25			
LQP21A3N9C14	3.9	10.21111		120						
LQP21A4N7C14	4.7			115			0.3	5400	400	
LQP21A5N6C14	5.6			110			0.3	4500		
LQP21A6N8C14	6.8			100			0.35	4000		
LQP21A8N2C14	8.2		-	95	-		0.4	3400	350	-40°C to +85°C
LQP21A10NG14	10			85		300	0.4	3200		
LQP21A12NG14	12		300	70			0.45	2900	300	
LQP21A15NG14	15			68			0.55	2500	300	
LQP21A18NG14	18			60			0.7	2300	250	
LQP21A22NG14	22			42	17		0.9	1800	200	
LQP21A27NG14	27			40			1.1	1600	200	
LQP21A33NG14	33	±2%		39			1.5	1500		
LQP21A39NG14	39			36			1.5	1300	150	
LQP21A47NG14	47			35			1.7	1200		
LQP21A56NG14	56	1		34			2.9	1100		
LQP21A68NG14	68	1		32			3.7	1000	100	
LQP21A82NG14	82	1		31			4.5	900		
LQP21AR10G14	100	1		24			6.0	700	90	

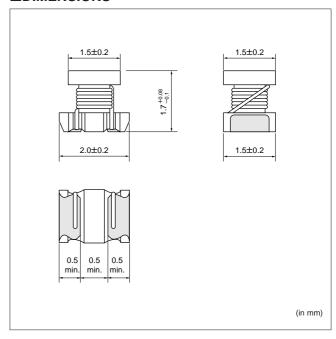
■TYPICAL ELECTRICAL CHARACTERISTICS

• Q - Frequency Characteristics

• Inductance - Frequency Characteristics


Chip Coil LQN21A Series for High Frequency

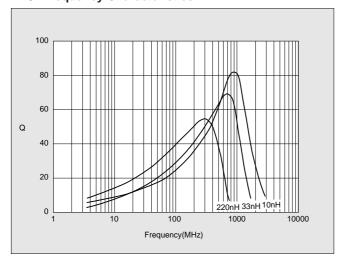
Ultra Small Winding-type Air-core Chip Coil with High Q Value at High Frequencies and Low DC Resistance


The LQN21A series consists of air-core chip coil using a sub-miniature alumina core as a bobbin. The high Q value at high frequencies and high self-resonant frequencies make this coil perfect for use in the high frequency circuits of communications equipment.

FEATURES

- 1. Broad range of inductance (3.3nH to 220nH).
- 2. Tight inductance tolerance ± 0.5 nH (8.2nH max.), $\pm 5\%$ (10nH to 220nH) is realized.
- 3. The sub miniature dimensions (2.0×1.5mm) allow high density mounting.
- 4. Their high self-resonant frequency characteristic yields a high Q value and highly stable inductance at high frequencies.

■DIMENSIONS



		Inductance	е		Q	*1		*2			
Part Number	Nominal Value(nH)	Tolerance	Test Frequency (MHz)	Peak Value (Typ.)	Min. Value	Test Frequency (MHz)	DC Resistance (Ωmax.)	Self-resonant Frequency (MHz min.)	Allowable Current (mA)	Operating Temp. Range	
LQN21A3N3D04	3.3	±0.5nH			10		0.05	6000	910		
LQN21A6N8D(K)04	6.8	±0.5nH		70	20		0.11	5400	680		
LQN21A8N2D(K)04	8.2	(±10%)			20		0.12	3900	630		
LQN21A10NJ(K)04	10			80			0.03	3300	1320		
LQN21A12NJ(K)04	12			65			0.11	3200	680		
LQN21A15NJ(K)04	15			0.5	30	250	0.12	2700	630		
LQN21A18NJ(K)04	18			70			0.10	2600	690		
LQN21A22NJ(K)04	22							0.09	2100	720	
LQN21A27NJ(K)04	27							0.17	2300	540	
LQN21A33NJ(K)04	33		100					0.15	1900	570	−25°C to
LQN21A39NJ(K)04	39	1.50/	100	80			0.09	1700	730	+85°C	
LQN21A47NJ(K)04	47	±5% (±10%)		65			0.23	1600	450		
LQN21A56NJ(K)04	56	(=1070)		70	40	200	0.26	1500	430		
LQN21A68NJ(K)04	68			65			0.23	1200	460		
LQN21A82NJ(K)04	82			60			0.42	1100	320		
LQN21AR10J(K)04	100			70		150	0.38	900	350		
LQN21AR12J(K)04	120			50		100	0.40	750	320		
LQN21AR15J(K)04	150			45	30		0.47	350	390		
LQN21AR18J(K)04	180			50	35	100	0.71	700	250		
LQN21AR22J(K)04	220			50	აა	100	0.70	500	240		

^{*1} Measured with LCR meter YHP4191A, measuring tap 16193A.

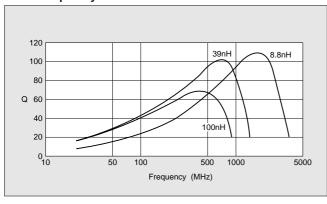
■TYPICAL ELECTRICAL CHARACTERISTICS

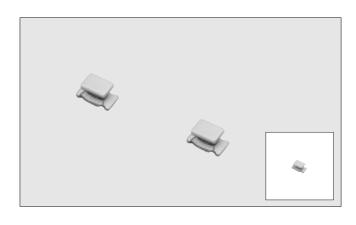
• Q - Frequency Characteristics

^{*2} Measured with Network Analyzer HP8753C.

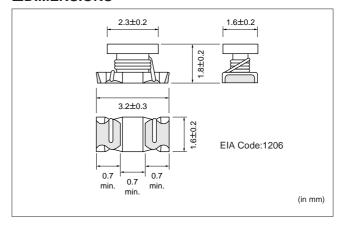
Chip Coil LQN1A Series for High Frequency

Air-core Chip Coil with High Q Value at High Frequencies and Low DC Resistance


The LQN1A series consists of air-core chip coils having miniature alumina core bobbins. These coils are excellent in high-frequency video and communication applications because of their high Q value at high frequencies and high self-resonant frequency.


FEATURES

- 1. Broad range of inductance (8.8nH to 100nH).
- Their high self-resonant frequency characteristic yields a high Q value and highly stable inductance at high frequencies.
- 3. The series has excellent solder heat resistance. Both flow and reflow soldering methods can be employed.
- 4. Miniature size (3.2×1.6×1.8mm) allows parallel mounting at 2.5mm pitch.
- 5. Tight inductance tolerance ±5% realized.


TYPICAL ELECTRICAL CHARACTERISTICS

• Q - Frequency Characteristics

DIMENSIONS

■SPECIFICATIONS

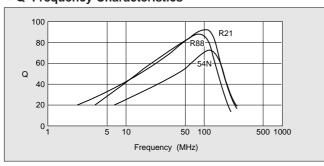
		Inductanc	е		Q		DC	Self-resonant	Allowable	Operating
Part Number	Nominal Value(nH)	Tolerance (%)	Test Frequency	Peak Value (Typ.)	Min. Value	Test Frequency	Resistance (Ω)	Frequency (MHz min.)	Current (mA)	Operating Temp. Range
LQN1A8N8J(K)04	8.8				50		0.029±40%		750	
LQN1A15NJ(K)04	14.7						0.035±40%		680	
LQN1A17NJ(K)04	17						0.037±40%		650	
LQN1A23NJ(K)04	23			100			0.046±40%		590	
LQN1A27NJ(K)04	27						0.051±40%		560	−25°C
LQN1A33NJ(K)04	33	±5	100MHz			436MHz	0.057±40%	1000	530	to
LQN1A39NJ(K)04	39	(±10)			60		0.067±40%		490	+85°C
LQN1A47NJ(K)04	47			90	00		0.110±40%		380	
LQN1A56NJ(K)04	56						0.140±40%		330	
LQN1A64NJ(K)04	64			80			0.180±40%		290	
LQN1A84NJ(K)04	84			70			0.280±40%		240	
LQN1AR10J(K)04	100			, 0			0.300±40%	900	230	

High Q Chip Coil LQN1H Series for High Frequency

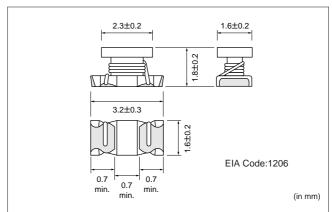
Wire Wound Chip Coil with High Q from 30MHz to 150MHz and Stable Inductance

The LQN1H series consists of wire wound chip coils which use ferrite cores for high frequency application. Their high Q values from 30MHz to 150MHz and low DC resistance make them suitable in high-frequency resonator circuits.

FEATURES


- Same dimensions as LQN1A/LQH1N/LQH1C series enables design flexibility.
- 2. Broad range of inductance 54 to 880nH.
- 3. High Q value and stable inductance at high frequency (30MHz to 150MHz).
- 4. Both flow and reflow soldering methods are applicable due to excellent solder heat resistance.
- Miniature size(3.2×1.6×1.8mm)allows parallel mounting at 2.5mm pitch.

APPLICATIONS


 Voltage controlled oscillators, traps, and filter circuits in mobile communication equipments, cordless phones, various radio equipment, FM radio turners, TV tuners (VHF low), VIF circuits

TYPICAL ELECTRICAL CHARACTERISTICS

Q-Frequency Characteristics

DIMENSIONS

■SPECIFICATIONS

		Inductance	е		Q		DC	Self-resonant	Allowable	Operating Temp. Range
Part Number	Nominal Value(nH)	Tolerance (%)	Test Frequency	Peak Value (Typ.)		Test Frequency	(0)	Frequency (MHz min.)	Current (mA)	
LQN1H54NK04	54	±10		65	50		0.035±30%	800	920	
LQN1H95NK04	95	<u> </u>		75			0.047±30%	650	790	
LQN1HR14K(J)04	145			80			0.061±30%	500	700	
LQN1HR21K(J)04	215					100MHz	0.11 ±30%	430	520	−25°C
LQN1HR29K(J)04	290		1MHz	1MHz	60		0.17 ±30%	360	420	to
LQN1HR39K(J)04	390	±10		85	60		0.26 ±30%	300	330	+85°C
LQN1HR50K(J)04	500	(±5)		65			0.44 ±30%	270	260	
LQN1HR61K(J)04	610						0.48 ±30%	240	250	
LQN1HR75K(J)04	750						0.79 ±30%	220	190	
LQN1HR88K(J)04	880			90			0.86 ±30%	200	180	

Miniature Chip Coil LQH1C/LQH3C Series for Power Line Choke

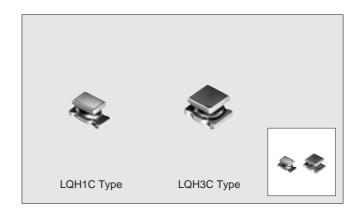
Miniature Chip Coil for Power Line Choke Has High Current Capacity, Low DC Resistance, Large Inductance

The LQH1C and LQH3C series consist of miniature chip coils with low DC resistance, high current capacity, and high impedance characteristics.

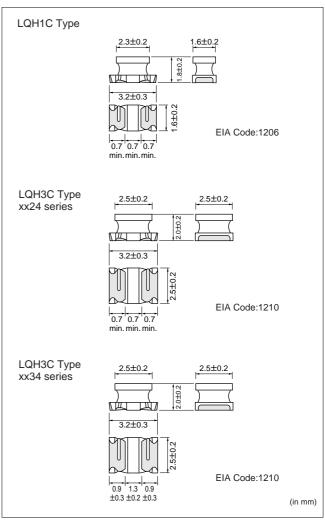
These features are made possible by the development of Murata's innovative automatic winding techniques. They are excellent for use as choke coils in DC power supply circuits.

FEATURES

- 1. The LQH1C and LQH3C series have an open magnetic structure. The series have a combined inductance range of 0.12 μ H to 560 μ H and are applicable in a wide variety of applications.
- The series exhibit low voltage drops and small variations in inductance with respect to temperature rise and DC current level. This makes them excellent for use as power supply line choke coils.
- 3. The series has excellent solder heat resistance. Both flow and reflow soldering methods can be employed.


LQH1C

Miniature size (3.2 \times 1.6 \times 1.8mm) allows parallel mounting at 2.5mm pitch. Despite their small size, at 0.12 μ H these coils have a maximum current rating of 970mA.


• LQH3C

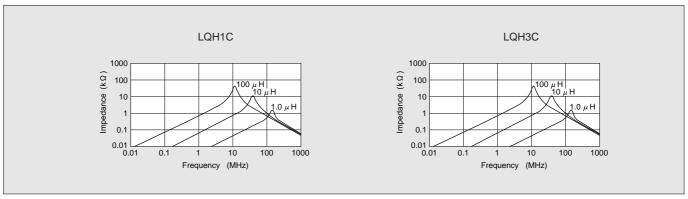
The low DC resistance means high current and high inductance.

For inductances ranging from 1.0 μ H to 10 μ H, LQH3C coils have very low DC resistance.

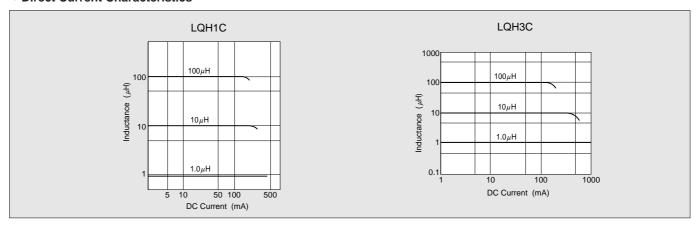
DIMENSIONS

LQH1C

		Inductance		DC	Self-resonant F	requency(MHz)	Allowable	Operating	
Part Number	Nominal Value(µH)	Tolerance (%)	Test Frequency	Resistance (Ω)	Тур.	Min.	Current (mA)	Temp. Range	
LQH1CR12M04	0.12			0.08±40%	900	250	970		
LQH1CR22M04	0.22			0.10±40%	570	250	850		
LQH1CR47M04	0.47	1.00	1MHz	0.15±40%	310	180	700		
LQH1C1R0M04	1.0	±20			0.28±30%	190	100	510	
LQH1C2R2M04	2.2			0.41±30%	110	50	430	_25°C	
LQH1C4R7M04	4.7			0.65±30%	67	31	340	to +85°C	
LQH1C100K04	10			1.3 ±30%	42	20	230		
LQH1C220K04	22	±10	-	3.0 ±30%	26	14	160		
LQH1C470K04	47	<u>-</u> 10		8.0 ±30%	18	10	100		
LQH1C101K04	100			12.0 ±30%	12	7	80		


LQH3C

		Inductance		DC	Self-resonant F	requency(MHz)	Allowable	Operating
Part Number	Nominal Value(µH)	Tolerance (%)	Test Frequency	Resistance (Ω)	Тур.	Min.	Current (mA)	Operating Temp. Range
LQH3C1R0M24*	1.0			0.060±30%	200	100	1000	
LQH3C2R2M24*	2.2	±20		0.097±30%	120	64	790	
LQH3C4R7M24*	4.7			0.15 ±30%	77	43	650	
LQH3C100K24*	10	±10		0.30 ±30%	50	26	450	
LQH3C1R0M34	1.0			0.09 ±30%	150	96	800	
LQH3C2R2M34	2.2	±20		0.13 ±30%	100	64	600	
LQH3C4R7M34	4.7		1MHz	0.20 ±30%	66	43	450	
LQH3C100K34	10		1101112	0.44 ±30%	40	26	300	−25°C
LQH3C220K34	22			0.71 ±30%	27	19	250	to +85°C
LQH3C470K34	47			1.3 ±30%	19	15	170	
LQH3C101K34	100			3.5 ±30%	13	10	100	
LQH3C221K34	220	±10		8.4 ±30%	8.5	6.8	70	
LQH3C331K34	330	±10		10.0 ±30%	7.0	5.6		
LQH3C391K34	390			17.0 ±30%	6.6		60	
LQH3C471K34	470			19.0 ±30%	6.2	5.0	00	
LQH3C561K34	560		TINIZ	22.0 ±30%	5.7			


*Low DC Resistance type.

■TYPICAL ELECTRICAL CHARACTERISTICS

• Impedance - Frequency Characteristics

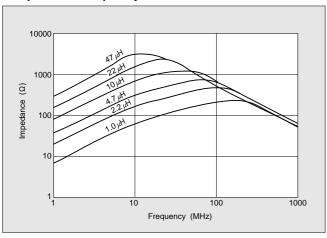
• Direct Current Characteristics

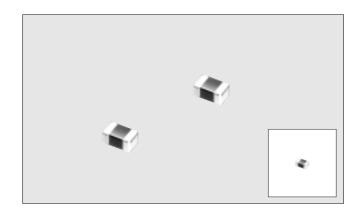
Monolithic Chip Coil LQG21C Series

Low DC Resistance Choke for Power Lines Has Magnetically Shielded Structure

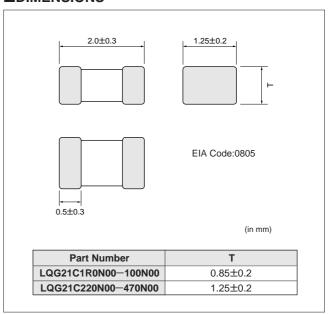
The LQG21C series consists of magnetically shielded chip coils developed with original Murata multilayer process technology and incorporating magnetic materials. It has less than half the DC resistance of our conventional monolithic chip coils as well as high inductance.

FEATURES


- 1. The inductors have very low DC resistance.
- 2. The series has an inductance range of 1.0 μ H to 47 μ H.
- 3. Magnetically shielded structure provides excellent crosstalk characteristics.
- 4. Compact (2.0×1.25mm) and lightweight.
- 5. Outstanding solder heat resistance. Either flow or reflow soldering methods can be employed.


APPLICATIONS

• Power lines (for choke use)


TYPICAL ELECTRICAL CHARACTERISTICS

• Impedance-Frequency Characteristics

DIMENSIONS

■SPECIFICATIONS

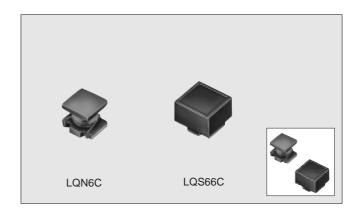
		Inductance		DC	Self-resonant F	requency(MHz)	Allowable	Operating
Part Number	Nominal Value(μH)	Tolerance (%)	Test Frequency	Resistance (Ωmax.)	Тур.	Min.	Current (mA)	Operating Temp. Range
LQG21C1R0N00	1.0			0.10	150	75	60	
LQG21C2R2N00	2.2			0.17	100	50	40	
LQG21C4R7N00	4.7	±30	1MHz	0.30	70	35	30	−25°C
LQG21C100N00	10	±30	IIVITZ	0.50	45	24	15	to +85°C
LQG21C220N00	22			0.65	20	16	13	
LQG21C470N00	47			1.20	_	7.5	7	

Large Current Choke Coil LQN6C/LQS66C Series

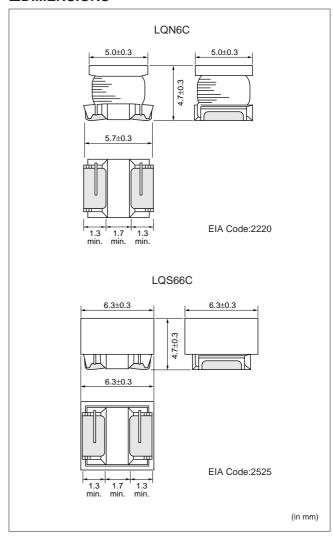
Choke Coil for DC/DC Converters and DC Power Lines with Low DC Resistance, Large Current Capacity and Large Inductance

The LQN6C/LQS66C series are choke coils which have achieved low direct current resistance, large current capacity and large inductance by using high performance thick wire wrapping technology.

Because the LQS66C series has a shielded construction, it can be mounted in high density without interference occurring between peripheral components.


They are optimum for use as choke coils in DC/DC converters and DC power supply circuits.

FEATURES

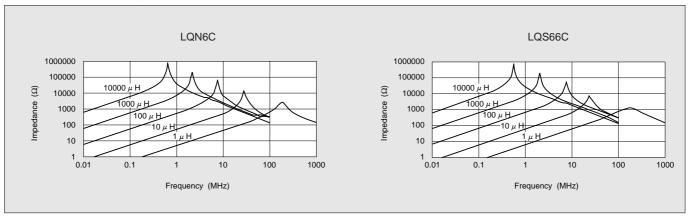

- Both the LQN6C series with its open magnetic path construction and the LQS66C series with its magnetic shielding construction allow application to a wide variety of uses
- 2. The inductance range covers from 0.12 μ H up to 10000 μ H allowing minute compatibility with the E6 series at 1 μ H to 1000 μ H.
- Because the direct current resistance is small as well as the voltage drop and power consumption being small also, they are optimum for use as choke coils for DC power supply circuits.

APPLICATIONS

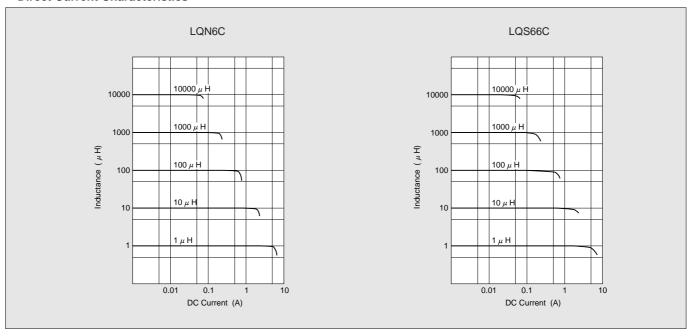
- Camcorders, portable AV equipment, etc.
- DC/DC converters and DC power supplies

DIMENSIONS

LQN6C

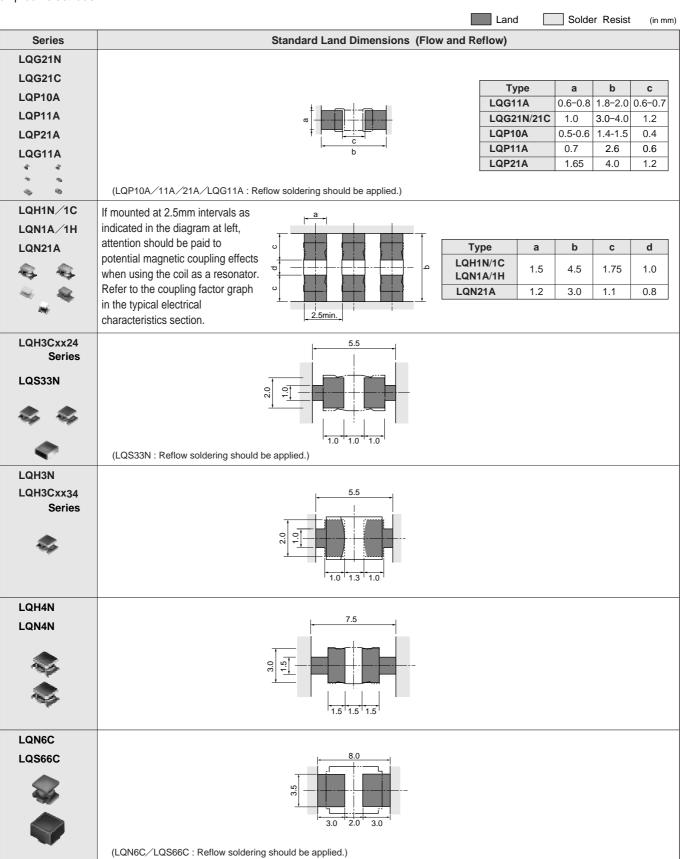

		Inductance		DC	Self-resonant	Allowable	On anoting			
Part Number	Nominal Value(μH)	Tolerance (%)	Test Frequency	Resistance (Ω±40%)	Frequency (MHz min.)	Current (A)	Operating Temp. Range			
LQN6CR12M04	0.12			0.007	450	6.0				
LQN6CR27M04	0.27			0.010	300	5.3				
LQN6CR47M04	0.47			0.013	200	4.8				
LQN6C1R0M04	1.0			0.019	150	4.0				
LQN6C1R5M04	1.5			0.022	110	3.7				
LQN6C2R2M04	2.2			0.029	80	3.2				
LQN6C3R3M04	3.3			0.036	40	2.9				
LQN6C4R7M04	4.7		1MHz	0.041	30	2.7				
LQN6C6R8M04	6.8						0.074	25	2.0	
LQN6C100M04	10						0.093	20	1.7	
LQN6C150M04	15			0.15	17	1.4				
LQN6C220M04	22			0.19	15	1.2	−25°C			
LQN6C330M04	33	±20		0.32	12	0.9	to			
LQN6C470M04	47			0.40	10	0.8	+80°C			
LQN6C680M04	68			0.67	7.6	0.64				
LQN6C101M04	100			0.86	6.5	0.56				
LQN6C151M04	150			1.9	5.0	0.42				
LQN6C221M04	220		100kHz	2.4	4.0	0.32				
LQN6C331M04	330		1001112	4.4	3.1	0.27				
LQN6C471M04	470			5.4	2.4	0.24				
LQN6C681M04	680			8.1	1.9	0.19				
LQN6C102M04	1000]		10.3	1.7	0.15				
LQN6C222M04	2200]	10kHz	21.5	1.2	0.10				
LQN6C472M04	4700		TORTIZ	43.6	0.8	0.07				
LQN6C103M04	10000			100	0.5	0.05				

LQS66C


		Inductance		DC	Self-resonant	Allowable	Omenations																		
Part Number	Nominal Value(μH)	Tolerance (%)	Test Frequency	Resistance ($\Omega\pm40\%$)	Frequency (MHz min.)	Current (A)	Operating Temp. Range																		
LQS66CR27M04	0.27			0.007	300	6.0																			
LQS66CR68M04	0.68			0.010	180	5.3																			
LQS66C1R0M04	1.0			0.013	150	4.7																			
LQS66C1R5M04	1.5			0.016	110	3.8																			
LQS66C2R2M04	2.2			0.019	80	3.3																			
LQS66C3R3M04	3.3			0.022	40	2.6																			
LQS66C4R7M04	4.7		1MHz	0.025	30	2.2																			
LQS66C6R8M04	6.8		IIVITZ	0.029	25	1.8																			
LQS66C100M04	10							0.036	20	1.6															
LQS66C150M04	15				0.069	17	1.3																		
LQS66C220M04	22				0.087	15	1.1	−25°C																	
LQS66C330M04	33	±20		0.14	12	0.86	to																		
LQS66C470M04	47			0.17	10	0.76	+80°C																		
LQS66C680M04	68			0.29	7.6	0.60	1																		
LQS66C101M04	100			0.36	6.5	0.52																			
LQS66C151M04	150									0.63	5.0	0.42	-												
LQS66C221M04	220		100₺⊔-	0.79	4.0	0.35	-																		
LQS66C331M04	330		100KHZ	100kHz	100kHz	100kHz	TOURHZ	TOURITZ	TUUKTZ	TOURHZ	TOURHZ	TOOKITZ	TUUKHZ	100kHz	100kHz	100kHz	100kHz	TOURHZ	TOURHZ	TOURHZ	TOUKHZ	1.8	3.2	0.28	
LQS66C471M04	470	1		2.2	2.5	0.24																			
LQS66C681M04	680	1		3.9	2.0	0.20	1																		
LQS66C102M04	1000	1		4.9	1.7	0.16	1																		
LQS66C222M04	2200	1	10kHz	9.4	1.2	0.10	1																		
LQS66C472M04	4700	1	IUKIZ	19.5	0.8	0.07	1																		
LQS66C103M04	10000	1		39.7	0.5	0.05	1																		

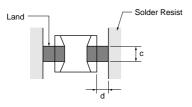
■TYPICAL ELECTRICAL CHARACTERISTICS

• Impedance-Frequency Characteristics



• Direct Current Characteristics

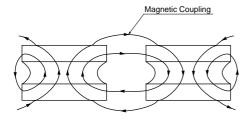
1. Standard Land Dimensions


A high Q value is achieved when the PCB electrode land pattern is designed so that it does not project beyond the chip coil electrode.

2. Mounting Instructions

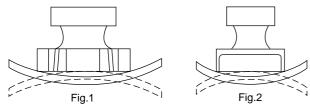
1 Land Pattern Dimensions

Large lands reduce Q of the mounted chip. Also, large protruding land areas (bordered by lines having dimensions c and d shown below) cause floating and electrode cracks.



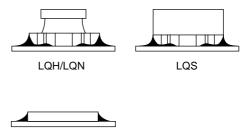
2 Magnetic Coupling

Since some chip coils are constructed like an open magnetic circuit, narrow spacing between coils may cause magnetic coupling.


(Please refer to Page 37 for coil-to-coil spacing and coupling coefficient.)

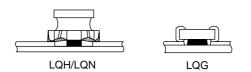
The LQS and LQG series have a magnetically shielded structure. The structure makes their coupling coefficient smaller than that of conventional chip coils. In particular, the LQS33N series has a very small coupling coefficient.

3 PCB Warping


Arrange chip coils to minimize stress caused by PCB warping.

The arrangement shown in Fig.2 is more effective in preventing stress than that shown in Fig.1.

4 Amount of Solder Paste


Excessive solder causes electrode corrosion, while insufficient solder causes low electrode bonding strength. Adjust the amount of solder paste so that solder is applied as shown below.

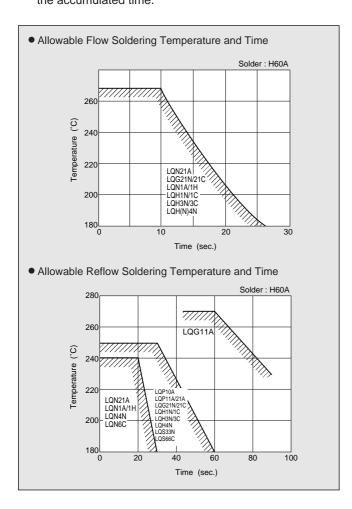
- Standard thickness of solder paste : 200 to 300 μ m (LQG Series,LQP10A : 100 μ m,LQP11A/21A : 100 μ m to 150 μ m)
- 5 Amount of Adhesive

LQP/LQG

If too much adhesive is applied, then it may overflow into the land or termination areas and yield poor solderability. In contrast, if insufficient adhesive is applied, or if the adhesive is not sufficiently hardened, then the chip may become detached during flow soldering. Apply the adhesive in accordance with the following conditions.

	Typical Application Amount (in mg)				
	MR-8153RA	NF-3000	UVS-50R-2		
LQG21N/21C	0.15-0.20	0.20-0.25	0.20-0.25		
LQN21A	0.16-0.18	0.21-0.23	0.21-0.23		
LQH1N/1C LQN1A/1H	0.18-0.20	0.20-0.25	0.20-0.25		
LQH3N/3C	0.20-0.23	0.27-0.35	0.27-0.35		
LQH(N)4N	0.45-0.50	0.60-0.80	0.60-0.80		

3. Standard Soldering Conditions

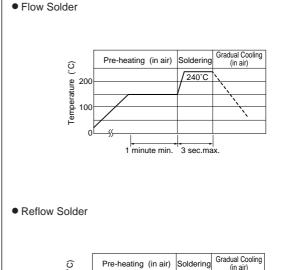

1 Soldering Method

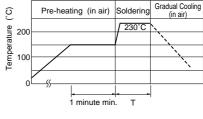
Chip coils can be flow or reflow soldered.(LQS33N, LQS66C and LQP11A/21A should only be reflow soldered)

Please contact Murata regarding other soldering methods.

The volume of solder can cause minor fluctuations in inductance value. Therefore, carefully control the amount of solder when soldering the LQP11A/21A and LQG11A series.

② Soldering Temperature and Time Solder within the temperature and time combinations indicated by the slanted lines in the following graphs. If soldering is repeated, please note that the allowed time is the accumulated time.




3 Solder and Flux

Solder: Use H60A, H63A, (JIS Z 3282) or equivalent. Use solder paste equivalent to H60A for LQP10A/11A/21A and LQG11A.

Flux: Use rosin-based flux, but not strongly acidic flux (with chlorine content exceeding 0.2wt%).

4 Standard Soldering Conditions

Series	Pre-heating (150°C)	Soldering Time (T)	Soldering Temp (°C)
LQG21N/21C LQP21A LQH1N/1C LQN1A/1H LQN21A LQH3N/3C LQH4N/LQN4N LQS33N LQN6C/LQC66C	60 sec.min.	10 sec.max.	230
LQG11A/LQP10A/11A		20 sec.max.	

⑤ Reworking with Soldering Iron Preheating at 150°C for 1 minute is required. Do not directly touch the ceramic element with the tip of the soldering iron. The reworking soldering conditions are as follows.

Soldering iron power output : 30W max.

Temperature of soldering iron tip : 280°C

Diameter of soldering iron end : 3.0mm max.

Soldering time : within 3 sec.

4. Cleaning

The following conditions should be observed when cleaning chip coils.

- ① Cleaning Temperature: 60°C max.(40°C max. for CFC alternatives and alcohol cleaning agents)
- 2 Ultrasonic

Output:20W/l max.

Duration: 5 minutes max.

Frequency: 28 to 40kHz

Care should be taken not to cause resonance of the PCB and mounted products.

3 Cleaning Agent

The following cleaning agents have been tested on individual components. Evaluation in complete assembly should be done prior to production.

- a) CFC alternatives and alcohol cleaning agents
 - Isopropyl alcohol(IPA)
 - •HCFC-225
- b) Aqueous cleaning agents
 - •Surface active agent(Clean Thru 750H)
 - Hydrocarbon (Techno Cleaner 335)
 - High grade alcohol(Pine Alpha ST-100S)
 - Alkaline saponifier(Aqua Cleaner 240-cleaner should be diluted to 20% using deionized water.)
 LQH,LQS series:Aqueous agents should not be used because they may cause quality deterioration.
- ④ Ensure that flux residue is completely removed. Component should be thoroughly dried after aqueous agents have been removed with deionized water. For additional cleaning methods, please contact Murata.

5. Resin Coating

When coating products with resin, the relatively high resin curing stress may change inductance values.

For exterior coating, select resin carefully so that electrical and mechanical performance of the product is not affected.

6. Caution for Use

This item is designed to have sufficient strength, but handle with care not to make it chipped or broken due to its ceramic structure.

LQH/LQN Series

- Sharp material, such as a pair of tweezers, shall not touch to the winding portion to prevent the breaking of wire
- Mechanical shock should not be applied to the products mounted on the board to prevent the breaking of the core.

LQP Series

 The pattern of the chip coil is covered withe the protection film. But the handling the chip coil shall be taken care so that the chip coil would not be damaged with the pick-up nozzle, the sharp substance and so on.

• LQG 21N/21C Series

 There is possibility that the inductance value change due to magnetism. Don't use a magnet or a pair of tweezers with magnetism when chip coil are handled. (The tip of the tweezers should be molded with resin or pottery.)

7. Handling

- Avoid applying excessive stress to products to prevent damage.
- ② Do not touch winding with sharp objects such as tweezers to prevent wire breakage.
- ③ Do not apply excessive force to products mounted on boards to prevent core breakage.

8. Operating Environment

Do not use products in corrosive gases atmosphere such as chlorine gas, acid or sulfide gas.

9. Storage Requirements

1 Storage Period

Products should be used within 6 months of receipt. Solderability should be verified if this period is exceeded. (LQH,LQN series should be used within 12 months.)

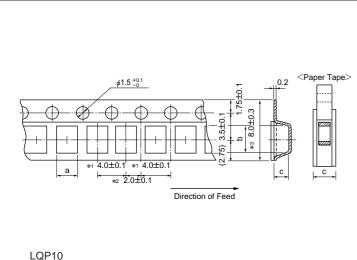
- 2 Storage Conditions
- a) Store products in a warehouse in compliance with the following conditions:

Temperature : -10 to 40°C Humidity : 30 to 70%

(relative humidity)

Do not subject products to rapid changes in temperature and humidity.

Do not store them in corrosive gases atmosphere such as one containing sulfurous acid gas or alkaline gas. This will prevent electrode oxidation which causes poor solderability and possible corrosion of coils.


- b) Do not store products in bulk packaging to prevent collision among coils which causes core chipping and wire breakage.
- Store products on pallets to protect from humidity,dust, etc.
- d) Avoid heat shock, vibration, direct sunlight, etc.

10. Transportations

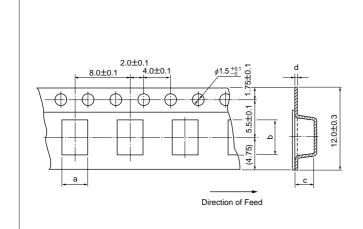
Do not apply excessive vibration or mechanical shock to products.

Dimensions of Taping

LQG21N/21C, LQG11A, LQH1N/1C, LQN1A/1H, LQN21A, LQH3N/3C, LQP11A/21A (8mm Tape)

• Paper Tape

				Minimum	Quantity
Series	а	b	С	ø180mm Reel	ø330mm Reel
LQG21NR10K10-2R2K10	1.45	2.25	1.1		
LQG21C1R0N00-100N00	1.45	2.20	1.1		
LQG11A	1.05	1.85		4,000	10,000
LQP10A	0.70 1.19	1.20	1.0		
LQP11A		2.00			


Plastic Tape

		b	С	Minimum Quantity	
Series	а			ø180mm Reel	ø330mm Reel
LQG21N2R7K10-4R7K10	1.55	2.3	1.3	3,000	10,000
LQG21C220N00-470N00	1.55	2.3	1.3	3,000	10,000
LQH1N/1C•LQN1A/1H	1.9	3.6	2.0		
LQN21A	1.75	2.3	2.0	2,000	7,500
LQH3N/LQH3C	2.9	3.6	2.1		
LQP21A	1.6	2.4	0.75	4,000	10,000

(in mm)

LQS33N, LQH(N)4N, LQN6C, LQS66C (12mm Tape)

*1:2.0±0.05 *2:1.0±0.05 *3:8.0±0.2

					Minimum	Quantity
Series	а	b	С	d	ø180mm Reel	ø330mm Reel
LQS33N	3.9	3.7	1.9	0.3	1,000	_
LQH(N)4N	3.6	4.9	2.7	0.5	500	2,500
LQN6C	5.4	6.1	5.0	0.4	350	_
LQS66C	6.7	6.7	5.2	0.4	330	

(in mm)

Design Kit

DESIGN KIT

Various chip coils are available in design kits assembled according to application.

⟨Design Kit for High Frequency Range⟩

Part Number: EKLB11EA

Contents : LQN21A/LQN1A/LQN1H/LQP11A/LQP21A

EKLB11EA

No.	Part Number	QTY. (pcs.)
1	LQN21A3N3D04	20
2	LQN21A6N8D04	20
3	LQN21A8N2D04	20
4	LQN21A10NJ04	20
5	LQN21A12NJ04	20
6	LQN21A15NJ04	20
7	LQN21A18NJ04	20
8	LQN21A22NJ04	20
9	LQN21A27NJ04	20
10	LQN21A33NJ04	20
11	LQN21A39NJ04	20
12	LQN21A47NJ04	20
13	LQN21A56NJ04	20
14	LQN21A68NJ04	20
15	LQN21A82NJ04	20
16	LQN21AR10J04	20
17	LQN21AR12J04	20
18	LQN21AR15J04	20
19	LQN21AR18J04	20
20	LQN21AR22J04	20
21	LQN1A8N8J04	20

No.	Part Number	QTY. (pcs.)
22	LQN1A17NJ04	20
23	LQN1A27NJ04	20
24	LQN1A39NJ04	20
25	LQN1A56NJ04	20
26	LQN1A84NJ04	20
27	LQN1AR10J04	20
28	LQN1H54NK04	20
29	LQN1H95NK04	20
30	LQN1HR14K04	20
31	LQN1HR21K04	20
32	LQN1HR29K04	20
33	LQN1HR39K04	20
34	LQN1HR50K04	20
35	LQN1HR61K04	20
36	LQN1HR75K04	20
37	LQN1HR88K04	20
	LQP11A1N3C00	
38		20
39	LQP11A1N5C00	20
40	LQP11A1N8C00	20
41	LQP11A2N2C00	20
42	LQP11A2N7C00	20
43	LQP11A3N3C00	20
44	LQP11A3N9C00	20
45	LQP11A4N7C00	20
46	LQP11A5N6C00	20
47	LQP11A6N8C00	20
48	LQP11A8N2C00	20
49	LQP11A10NG00	20
50	LQP11A12NG00	20
51	LQP11A15NG00	20
52	LQP11A18NG00	20
53	LQP11A22NG00	20
54	LQP11A27NG00	20
55	LQP11A33NG00	20
56	LQP21A1N5C14	20
57	LQP21A2N2C14	20
58	LQP21A3N3C14	20
59	LQP21A4N7C14	20
60	LQP21A6N8C14	20
61	LQP21A10NG14	20
62	LQP21A15NG14	20
63	LQP21A22NG14	20
64	LQP21A33NG14	20
65	LQP21A39NG14	20
66	LQP21A47NG14	20
67	LQP21A56NG14	20
68	LQP21A68NG14	20
69	LQP21A88NG14	20
70	LQP21AR10G14	20

[•] Please use the products in this Design Kit for experiment or test production, but do not use for mass production. When useing for mass production, please order them after confirming detailed specifications by approving the appropriate individual specification sheet.

muRata

Design Kit

⟨Design Kit for General Frequency Range⟩

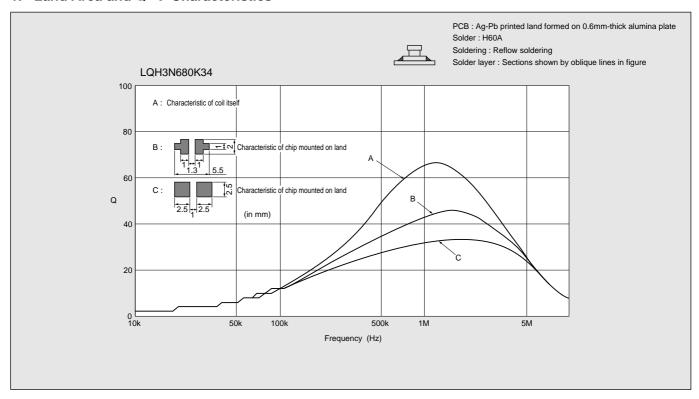
Part Number: EKLB21EA

Contents: LQH3C/LQH3N/LQH4N/LQN4N

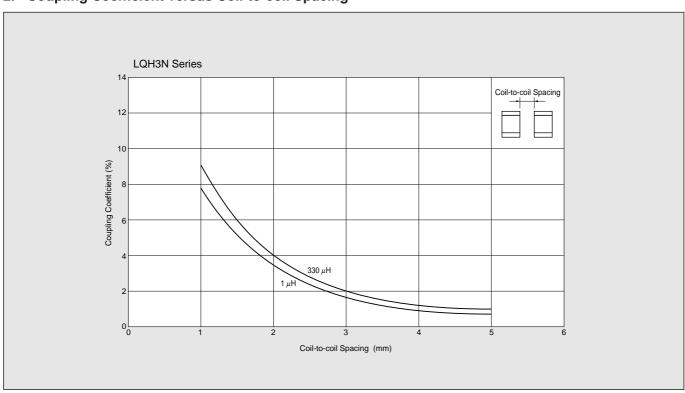
EKLB21EA

No.	Part Number	QTY
1	LQH3C1R0M34	20
2	LQH3C2R2M34	20
3	LQH3C4R7M34	20
4	LQH3C100K34	20
5	LQH3C470K34	20
6	LQH3C221K34	20
7	LQH3C391K34	20
8	LQH3C561K34	20
9	LQH3NR10M34	20
10	LQH3NR18M34	20
11	LQH3NR27M34	20
12	LQH3NR39M34	20
13	LQH3NR56M34	20
14	LQH3NR68M34	20
15	LQH3NR82M34	20
16	LQH3N1R0M34	20
17	LQH3N1R5K34	20
18	LQH3N2R2K34	20
19	LQH3N3R3K34	20
20	LQH3N4R7K34	20
21	LQH3N6R8K34	20
22	LQH3N100K34	20
23	LQH3N120K34	20
24	LQH3N150K34	20
25	LQH3N220K34	20
26	LQH3N330K34	20
27	LQH3N470K34	20
28	LQH3N680K34	20
29	LQH3N101K34	20
30	LQH3N121K34	20
31	LQH3N181K34	20
32	LQH3N271K34	20
33	LQH3N391K34	20
34	LQH3N561K34	20
35	LQH4N180K04	20
36	LQH4N270K04	20
37	LQH4N390K04	20
38	LQH4N560K04	20
39	LQH4N820K04	20
40	LQH4N121K04	20
41	LQH4N221K04	20
42	LQH4N331K04	20
43	LQH4N471K04	20

No.	Part Number	QTY
44	LQH4N681K04	20
45	LQH4N821K04	20
46	LQH4N102K04	20
47	LQH4N122K04	20
48	LQH4N152K04	20
49	LQN4N182K04	20
50	LQN4N222K04	20


⟨Design Kit for individual series⟩

Part Number	Contents
EKLM11UA	LQP11A
EKLM12UA	LQN21A
EKLM13UA	LQG11A
EKLM21UA	LQG21N/LQG21C


• Please use the products in this Design Kit for experiment or test production, but do not use for mass production. When useing for mass production, please order them after confirming detailed specifications by approving the appropriate individual specification sheet.

Information of Chip Coil

1. Land Area and Q - F Characteristics

2. Coupling Coefficient versus Coil-to-coil Spacing

1. Export Control

(For customers outside Japan)

Murata products should not be used or sold for use in the development, production, stockpiling or utilization of any conventional weapons or mass-destructive weapons (nuclear weapons, chemical or biological weapons, or missiles), or any other weapons.

(For customers in Japan)

For products which are controlled items subject to "the Foreign Exchange and Foreign Trade Control Law" of Japan, the export license specified by the law is required for export.

- 2. Please contact our sales representatives or engineers before using our products listed in this catalog for the applications requiring especially high reliability what defects might directly cause damage to other party's life, body or property (listed below) or for other applications not specified in this catalog.
 - ① Aircraft equipment
 - ② Aerospace equipment
 - 3 Undersea equipment
 - 4 Medical equipment
 - ⑤ Transportation equipment (automobiles, trains, ships,etc.)
 - **6** Traffic signal equipment
 - ① Disaster prevention / crime prevention equipment
 - ® Data-processing equipment
 - Applications of similar complexity or with reliability requirements comparable to the applications listed in the above
- 3. Product specifications in this catalog are as of September 1997, and are subject to change or stop the supply without notice. Please confirm the specifications before ordering any product. If there are any questions, please contact our sales representatives or engineers.
- 4. The categories and specifications listed in this catalog are for information only. Please confirm detailed specifications by checking the product specification document or requesting for the approval sheet for product specification, before ordering.
- 5. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or third party's intellectual property rights and other related rights in consideration of your using our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 6. None of ozone depleting substances (ODS) under the Montreal Protocol is used in manufacturing process of us.

http://www.murata.co.jp/